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Abstract

We briefly discuss the origins of Kaluza-Klein theory. First, we describe Kaluza’s original “cylinder
condition” and how this allows for the unification of Einstein gravity and electromagnetism in a five-
dimensional framework. We then discuss possible justifications of the cylinder condition, with a special
emphasis on Klein’s compactification approach.

1 Introduction and Some History

As early as 1914, physicists dreamed of a geometric unification the fundamental forces of nature. Inspired
by Minkowski’s treatment of Maxwell’s equations in special relativity [1], Gunnar Nordström unified electro-
magnetism and Newtonian gravity by embedding a symmetric energy-momentum tensor in five-dimensional
Minkowski space [2, 3]. Since Nordström’s idea relies on Newtonian gravity, it’s not particularly relevant
today. But given that Nordstöm published his idea before the discovery of general relativity, it does represent
a remarkably prescient geometric approach to fundamental physics.

Only seven years later, now after the discovery of general relativity, Theodor Kaluza discovered that the
metric tensor of five-dimensional curved spacetime can be viewed as the metric of four-dimensional spacetime
coupled to the electromagnetic vector potential and a scalar field [2, 4]. He sent his idea to Einstein, who
encouraged him to publish [2] and who later expanded on Kaluza’s idea [2, 5].

Kaluza-Klein theory gets the other half of its name from Oscar Klein. As we will see in section 2, Kaluza’s
theory imposes a rather arbitrary condition—which he called the “cylinder condition”—on the geometry.
In an innovative attempt to quantize electric charge, Klein suggested one explanation for this condition,
where the extra fifth dimension is periodic and very small. See section 3 for details. The insights of Kaluza
and Klein have inspired a plethora of higher-dimensional unification schemes, from supergravity and string
theory [2, 6, 7] to Brane theory and higher-dimensional cosmologies [8, 9].

In this work, we discuss Kaluza’s initial insight in section 2 and Klein’s extension of the theory in 3.
Klein’s method is not the only physically compelling way to study the cylinder condition and we will briefly
discuss the other approaches in that section as well. Finally, in section 4 we offer some concluding remarks.

2 Kaluza’s Five-Dimensional Spacetime

We now present Kaluza’s original idea with the arbitrary “cylinder condition.” Although Kaluza originally
used Einstein’s tensor notation [4], Thiry demonstrated that the langauge of differential forms is better suited
to the task at hand [10], so we will use that notation. We borrow the setup from Einstein and Bergmann [5]
and then loosely follow Pope, but with more detail [6].

2.1 General Construction

Let M(5) be a (4+1)-dimensional Lorentzian manifold and let

x̂ = xA∂A (1)
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be a set of general coordinates onM(5).1 Without loss of generality, we choose ∂x0 to be the basis element in
a timelike direction, ∂i to be three spatial coordinates, and ∂4 to the be the fourth spatial coordinate, which
will describe the extra fifth dimension. By convention we will choose timelike directions to have negative
square norm and spacelike directions to have positive square norm. We will call the five-dimensional metric
ĝAB .2

2.1.1 The Cylinder Condition

At this point, there is no geometric difference between any of the spacelike coordinates; ∂i i ∈ {1, 2, 3}, and
∂4 are indistinguishable. Kaluza’s cylinder condition, however, will make them distinct, and we are now in a
position to state it. Kaluza (rather apologetically) enforces that the five-dimensional metric be independent
of x4 [4, 2, 7]. In other words, the derivatives of the metric with respect to the fifth coordinate must vanish:

∂4ĝAB = 0. (2)

This is a statement about symmetry. The cylinder condition demands that the spacetime have a specific
isometry,

x4 → x4 + ε, ∀ ε ∈ R. (3)

Furthermore, it enforces a specific parametrization where ∂4 is the Killing vector associated with our isometry.
Mathematicians call parametrizations of this type “Clairaut” [11], and the existence a Clairaut parametriza-
tion is not at all guaranteed. We are requiring that at least one spacelike Killing vector field exists in this
spacetime and, since most spacetimes lack any isometries, this condition is quite restrictive.

This Clairaut parametrization does allow us to define tensors on M(4), however. We can foliate our
spacetime by spacelike hypersurfaces, each orthogonal to the Killing vector field ∂5, such that these hyper-
surfaces are related by a global isometry. We call any such hypersurface M(4). This foliation allows us to
write down the topology of M(5):

M(5) =M(4) ×M(1), (4)

where M(1) is some one-dimensional Euclidean manifold [5]. The choice of hypersurface in a given foliation
is arbitrary, since the five-metric will be identical on each one.

2.1.2 The Metric

We want to choose a geometrically natural parametrization and write down a metric. Before we do that,
however, let’s define a few quantities which we will use to build our line element. First, let the four-
dimensional metric on a given hypersurface be gµν . Let Aµ be a four-covector field and let φ be a scalar
field on M(4).

Although they won’t have tensorial properties on the general five-dimensional spacetime, we can certainly
extend these quantities and define them on M(5). However, we must impose that

∂4Aµ = 0, ∂4gµν = 0, and ∂4φ = 0. (5)

Although these names are suggestive—Aµ suggests a vector potential and φ suggests a scalar field—they
currently contain no physical information. They will only take on physical meaning once we write down a
metric and study the geometry of the space.

And now we’ll do just that. We can choose a parametrization of the space so that the five-dimensional
line element takes the form

dŝ2 = e2αφgµνdx
µdxν + e2βφ(dx4 +Aµdxµ)2, (6)

1In this work, Greek indices will sum from zero to three and upper-case Latin indices from zero to four.
2Later, we will define tensors on four-dimensional submanifolds of M(5). We will denote five-dimensional tensors with hats

on them and four-dimensional tensors without the hats.
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where α and β are currently arbitrary constants [6]. This means that the components of the five-dimensional
metric tensor ĝAB take the form

ĝµν = e2αφgµν + e2βφAµAν , ĝµ4 = e2βφAµ, and ĝ44 = e2βφ. (7)

So long as β 6= 0, this metric corresponds to a valid Clairaut parametrization of the space. Although this
metric looks a little funny, the reason for our choice will be clear soon.

To make the remaining calculations easier, let’s transition to a coordinate-free description. Let be ea be
a tetrad basis for one of the M(4) hypersurfaces such that

ηab = eµae
ν
b gµν ∀ a, b ∈ {0, 1, 2, 3}.

We now want to write down a fünfbein basis for the five dimensional spacetime, satisfying

η̂ab = êAa ê
B
b ĝAB ∀ a, b ∈ {0, 1, 2, 3, 4}.

Thanks to our nice choice of coordinates we can see by inspection3 that

êa = eαφea and êz = eβφ(dx4 +Aµdxµ) (8)

will work. Beware the abuse of notation! ea is a tetrad basis element, but eαφ and eβφ are Euler’s constant
raised to powers. In keeping with Pope, we will denote the coordinate-free basis elements by lower-case Latin
indices. We set aside lower-case z for the basis element pointing in direction associated with the cylinder
condition [6]. We will assume that that lower-case Latin indices range from zero to three. If they do not,
the range will be indicated.

To calculate the curvature of the space, we turn to the Cartan structure equations [12],

T̂ a = dêa + ω̂ab ∧ êb, a, b ∈ {0, 1, 2, 3, 4}
R̂ab = dω̂ab + ω̂ac ∧ ωcb + ω̂az ∧ êz, a, b, c ∈ {0, 1, 2, 3, 4}

where T̂ a, R̂ab, and ω̂ab are the five-dimensional torsion two-form, curvature two-form and spin connections
respectively. Since our spacetime is Torsion-free, the structure equations reduce to

0 = dêa + ω̂ab ∧ êb + ω̂az ∧ êz (9)

0 = dêz + ω̂zb ∧ êb + ω̂zz ∧ êz (10)

R̂ab = dω̂ab + ω̂ac ∧ ωcb + ω̂az ∧ êz (11)

R̂az = dω̂az + ω̂ac ∧ ω̂cz + ω̂az ∧ êz (12)

R̂zz = dω̂zz + ω̂zc ∧ ω̂cz + ω̂zz ∧ êz (13)

with our usual index conventions. We’ll need the following one-form,

dφ = ∂Aφdx
A = ∂µφdx

µ. (14)

Let’s use equations 9 and 10 to calculate the spin connection.

dêa = d
(
eαφea

)
= deαφ ∧ ea + eαφdeb

= αeαφdφ ∧ ea − eαφωab ∧ eb

= αeaφ∂µφ(dxµ ∧ ea)− eaφωab ∧ eb,

but, from equation 9,

dêa = −ω̂ab ∧ êb + ω̂az ∧ êz

= −eαφω̂ab ∧ eb − eβφω̂az ∧ (dx4 +A)

3The power of working in a coordinate-free basis is that many quanities can be calculated “by inspection.”

3



too. So,
αeaφ∂µφ(dxµ ∧ ea)− eaφωab ∧ eb = −eαφω̂ab ∧ eb − eβφω̂az ∧ (dx4 +A). (15)

If we identify like terms,

ω̂ab ∧ eb = ωab ∧ eb, (16)

and αeαφ∂µ(ea ∧ dxµ) = eβφω̂az ∧ (dx4 +A). (17)

Similarly,

dêz = d
[
eβφ(dx4 +A)

]
= βeβφdφ ∧ (dx4 +A) + eβφd2x4 + eβφdA
= βeβφ∂µφdx

µ ∧ (dx4 +A) + eβφF , (18)

where F = dA. The d2x4 term disappears because d2Φ = 0 for any differential form Φ (x4 is a zero-form).
From equation 10,

dêz = −ω̂zb ∧ êb + ω̂zz ê
z

= −eαφω̂zb ∧ eb + ω̂zz ê
z.

So,
− eαφω̂zb ∧ eb = βeβφ∂µφdx

µ ∧ (dx4 +A) + eβφF . (19)

If we inspect equation 19 and re-absorb some of the scale factors into êz, we can infer that

ω̂az = −ω̂za = −βe−αφ∂aφêz − 1

2
Fabe(β−2α)φêb, (20)

and ω̂zz = 0. (21)

where ∂a = eµa∂µ is the partial derivative translated into a coordinate-free basis with the help of the inverse
fünfbeins on M(4), eµa. Similarly, Fab denotes the components of F in the coordinate-free basis [6]. If we
plug this result into equation 16, we find that

ω̂ab = ωab + αe−αφ(∂bφêa − ∂aφêb)− 1

2
Fabe(β−2α)φêz. (22)

It’s now relatively straightforward to compute the curvature two-form. For example, from equation 13,

R̂zz = ω̂zc ∧ ω̂cz

= −
[
βe−αφ∂aφêz +

1

2
Fabe(β−2α)φêb

]
∧
[
βe−αφ∂aφê

z +
1

2
Face(β−2α)φêc

]
= −β2e−2αφ (∂aφêz ∧ ∂aφêz)−

1

2
Fab e(β−3α)φêb ∧ ∂aφêz −

1

2
Fabe(β−3α)φ (∂aφêz) ∧ êb

−1

4
e2(β−2α)φFabFacêb ∧ êc

= −β2e−2αφ (∂aφêz ∧ ∂aφêz) +
1

2
Fab e(β−3α)φêb ∧ ∂aφêz −

1

2
Fab e(β−3α)φêb ∧ ∂aφêz

−1

4
e2(β−2α)φFabFacêb ∧ êc

⇒ R̂zz = β2e−2αφ2φ+
1

4
e2(β−2α)φF2, (23)

where
F2 = FabFab,
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and
2φ = ∂a∂

aφ = ∂µ∂
µφ (24)

is the Laplacian operator in four dimensions. The other calculations are similar. Pope gives the remaining
terms:

R̂ab = e−2αφ
(
Rab + (αβ − 2α2)∂aφ∂bφ− αηab2φ

)
− 1

2
e2(β−2α)φF c

a Fbc (25)

and R̂az = R̂za =
1

2
e(β−α)φ∇b

(
e2(α+β)φFab

)
, (26)

where Rab is the curvature 2-form on M(4), ηab is the four-dimensional Minkowski metric, and where ∇b is
the covariant derivative on the coordinate-free basis [6].

Then the five-dimensional Ricci scalar comes from the trace of the curvature 2-form [6]:

R̂ = ηabR̂ab + R̂zz

= e−2αφ
(
ηabRab + (αβ − 2α2) (∂φ)

2 − αηaa2φ
)
− 1

2
e2(β−2α)φF2 + β2e−2αφ2φ+

1

4
e2(β−2α)φF2

= e−2αφ
(
R+ (αβ − 2α2) (∂φ)

2
+ (β2 − 2α)2φ

)
− 1

4
e2(β−2α)φF2. (27)

2.1.3 Lagrangian Density

We would like to calculate the Lagrangian density for the theory. First,√
−ĝ = e(β+4α)φ√−g. (28)

So,4

L =
√
−ĝR̂

=
√
−ge(β+2α)φ

[
R+ (αβ − 2α2)(∂φ)2 + (β2 − 2α)2φ

]
− 1

4

√
−ge3βφF2. (29)

We are now in a position to set α and β. We want our theory to include four-dimensional Einstein gravity,
so the Lagrangian density better include a term that looks like

√
−gR. This tells us that we want [6]:

β = −2α. (30)

If we do this, our Lagrangian density becomes [6]:

L =
√
−g
[
R− 6α2(∂φ)2 + (4α2 − 2α)2φ− 1

4
e−6αφF2

]
.

The term −6α2 (∂φ)
2

is very reminiscent of the Klein-Gorden Lagrange density for a massless scalar field
[6]. In the Klein-Gordon action, the term is − 1

2 (∂φ)2 [6]. This informs our choice of α [6]:

α =
1√
12
. (31)

With α and β set, we can write down our final Lagrangian density. Since the Laplacian term 2φ, which
gives a total derivative in L will have no effect on variational calculations, we drop it [6]:

L =
√
−g
[
R− 1

2
(∂φ)

2 − 1

4
e−
√
3φF2

]
. (32)

4For simplicity, we will work in units were 1
16πG

= 1.
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From a five-dimensional theory that contains only gravity, we have constructed a four-dimensional La-
grangian density that includes Einstein gravity and a scalar field coupled to an object that looks an awful lot
like the Maxwell tensor. Indeed, if we set φ = 0, we would recover the Einstein-Maxwell Lagrangian density,

L =
√
−g
(
R− 1

4
F2

)
.

It would certainly be tempting to do so—we would get Einstein-Maxwell gravity and electromagnetism with
no extra complications.5 Unfortunately, this is forbidden [6]. To see why, let’s work out the field equations.

2.1.4 Field Equations

For simplicity, we will assume that the five-dimensional spacetime has no boundary and thus all boundary
terms will drop out. It is more convenient to use the variations δgαβ instead of δgαβ [14]. So,

δgαβ = −gαµgβνδgµν . (33)

We will also use the well-known variation of the determinant of the metric [14],

δ
√
−g = −1

2

√
−ggαβδgαβ . (34)

Now, the variation of the action is

δSkaluza =

∫
d5xδL

=

∫
d5xδ

[√
−g
(
R− 1

2
(∂φ)2 − 1

4
e−
√
3φF2

)]
⇒ δSkaluza =

∫ √
−gδ

(
R− 1

2
(∂φ)2 − 1

4
e−
√
3φF2

)
d5x

+

∫ (
R− 1

2
(∂φ)2 − 1

4
e−
√
3φF2

)
δ
√
−gd5x. (35)

To make things simpler, we’ll treat each integral separately. Let

δS1 =

∫ √
−gδ

(
R− 1

2
(∂φ)2 − 1

4
e−
√
3φF2

)
d5x (36)

and δS2 =

∫ (
R− 1

2
(∂φ)2 − 1

4
e−
√
3φF2

)
δ
√
−gd5x. (37)

The first integral becomes

δS1 =

∫ √
−gδ

(
R− 1

2
(∂φ)2 − 1

4
e−
√
3φF2

)
d5x

=

∫ √
−gδ

(
gµνRµν −

1

2
gµν(∂µφ)(∂νφ)− 1

4
e−
√
3φgµρgνσFµνFρσ

)
dx5

=

∫ √
−g
[
gαβδRαβ +Rαβδg

αβ − 1

2
(∂µφ)(∂νφ)δgµν − 1

2
gµν(∂µφ)∂νδφ

]
d5x

−1

4

∫ √
−g
[
−
√

3F2δφ+ 2se−
√
3φFµρF

νρδgµν + 2e−
√
3φFµνδFµν

]
d5x. (38)

5Historically, many people did set φ = 0—likely because they distrusted scalar fields [2, 7]. However, neither Kaluza nor
Klein made this simplification [2, 4, 13, 6].
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Similarly, if we use equation 34, the second integral becomes

δS2 =

∫ (
R− 1

2
(∂φ)2 − 1

4
e−
√
3φF2

)
δ
√
−gd5x

= −1

2

∫ √
−g
(
R− 1

2
(∂φ)2 − 1

4
e−
√
3φF2

)
gαβδg

αβd5x. (39)

If we combine δS1 and δS2, group variational variable and set the variation of the action to zero, we have
the following equations:

0 =

∫ √
−ggµνδRµνd5x. (40)

0 = −1

2

∫ √
−ge−

√
3φFµνδFµνd

5x (41)

0 =

∫ √
−g
[

1

4

√
3F2 − 1

2
(∂µφ)∂µ

]
δφd5x (42)

0 =

∫ √
−g
[
Rµν −

1

2
gµν −

1

2

(
(∂µφ)(∂νφ)− 1

2
(∂φ)2gµν

)
− 1

2

(
F2
µν −

1

4
F2gµν

)]
δgµνd5x, (43)

where
F2
µν = FµρF ρ

ν . (44)

Equation 40 becomes an integral over the boundary and vanishes [14]. The remaining three integrals define
our field equations [6, 7, 2, 4, 13, 15, 10, 5]:

Rµν −
1

2
Rgµν =

1

2

(
∂µφ∂νφ−

1

2
(∂φ)2gµν

)
+

1

2

(
F2
µν −

1

4
F2gµν

)
, (45)

0 = ∇µ
(
e−
√
3φFµν

)
, (46)

and 2φ = −3
√

3

2
e−
√
3φF2. (47)

People sometimes eliminate the − 1
2Rgµν term in equation 45 by subtracting the appropriate multiple of the

trace to get [6]:

Rµν =
1

2
∂µφ∂νφ+

1

2
e−
√
3φ

(
F2
µν −

1

4
F2gµν

)
. (48)

This is looking pretty familiar! If we let the energy momentum tensor be

Tµν =
1

2

(
∂µφ∂νφ−

1

2
(∂φ)2gµν

)
+

1

2

(
F2
µν −

1

4
F2gµν

)
, (49)

then equation 45 simply represents the field equations from Einstein gravity [12]. Similarly, although there’s
a re-scaling by φ, equation 46 looks very reminiscent of the source-free Maxwell equations in tensor notation
[12]. (The other equation from electromagnetism, F = dA, is encoded in our definition of F .) Equation 47
is new, though. This is the source term for the scalar field.

Now we can see why φ = 0 is forbidden in general. Because the scalar and electromagnetic fields interact,
φ = 0 if and only F2 = 0. In other words, if φ = 0, the entire system just reduces to four-dimensional
Einstein gravity with no electromagnetic field at all. Since we can’t get rid of φ, let’s give it a name. We
call it the dilaton [6].
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2.2 Symmetries

Out of a five-dimensional, purely gravitational system, we seem constructed the field equations for a four-
dimensional system that includes gravity, electromagnetism, and a scalar field. If this is truly the case,
however, the symmetries of the five-dimensional spacetime have to translate into the symmetries of a four-
dimensional spacetime and the gauge-invariances of the vector potential and scalar field [6, 7]. Let’s see if
we can understand how these symmetries appear. As before, this derivation closely follows that of Pope [6].

The five-dimensional Einstein theory is invariant under five-dimensional general coordinate transforma-
tions, which can be written infinitesimal form as

δx̂M = −ξ̂M (x̂), (50)

where ξ̂M is an arbitrary function of all five coordinates [6]. This induces a change in the five-dimensional
metric [6]:

δĝMN = ξ̂P∂P ĝMN + ĝPN∂M ξ̂
P + ĝMP∂N ξ̂

P . (51)

However, Kaluza’s cylinder condition is much more restrictive. It enforces that our coordinate system be
Clairaut and that ∂4 be a Killing vector (see section 2.1.1). Thus, in Kaluza’s theory, our “arbitrary” function
ξA takes on a particular form:

ξ̂µ(x̂) = ξµ(x) and ξ̂z(xA) = cx4 + λ(x), (52)

where ξµ(x) is a general coordinate transformation on M(4), c ∈ R is a constant, and λ(x) is an arbitrary
differentiable function onM(4) [6]. These are the coordinate transformations allowed in the five-dimensional
theory.

We can calculate the effects of an allowed coordinate on the four-dimensional metric, vector potential,
and dilaton field by plugging the allowed transformations into equation 7. As it turns out, almost all of the
four-dimensional symmetries we’re looking for can be attained with c = 0. For simplicity, we will discuss
this case first. Then we’ll discuss the symmetry embodied by c.

First, let’s look at ĝ44:

δĝ44 = ξ̂P∂P ĝ44 + ĝP4∂4ξ̂
P + ĝ4P∂4x̂i

P
= ξρ∂ρĝ44 + 2cĝ44

⇒ δe2βφ = ξρ∂ρe
2βφ

⇒ δφ = ξρ∂ρφ. (53)

This implies that φ does indeed transform as a scalar under four-dimensional general coordinate transfor-
mations. We also see the first hints of gauge symmetry: φ is independent λ, which will be the gauge choice
for our vector potential. These are the symmetries we would expect for a scalar field [6].

Similarly,

δĝµ4 = ξρ∂ρĝµ4 + ĝρ4∂µξ
ρ

⇒ δe2βφAµ = ξρ∂ρe
2βφAµ + e2βφAρ∂µξρ

⇒ δAµ = ξρ∂ρAµ +Aρ∂µξρ + ∂µλ(x). (54)

The ξρ∂ρAµ and Aρ∂µξρ terms are appropriate for covector on M(4), while the ∂µλ term reflects the
appropriate symmetry for a U(1) gauge field with gauge parameter λ. All this tells us that Aµ behaves
appropriately for the electromagnetic vector potential [6].

Finally,

δĝµν = ξρ∂ρĝµν + ĝρν∂µξ
ρ + ĝµρ∂νξ

ρ + ĝ4ν∂µξ
4 + ĝµ4∂νξ

4

⇒ δgµν = ξρ∂ρgµν + gµν∂µξ
ρ + gµρ∂νξ

ρ. (55)

This is, of course, the appropriate change in the metric under a general coordinate transformation. The
metric is thus independent of the gauge parameter λ, as it ought to be if Aµ is Maxwell’s vector potential
[6].
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With c = 0 we’ve found all the symmetries of an Einstein-Maxwell system: covariance with a general
coordinate transformation and gauge invariance under λ. However, we’re still missing the symmetry asso-
ciated with a scalar field; only the change in the dilaton should matter, not its overall value. This is the
constant shift symmetry [6]. To see how this symmetry appears, we need to discuss one further symmetry
of the five-dimensional theory.

In addition to general coordinate transformations, we can rescale the five-dimensional metric by a posi-
tive6 constant factor [6],

ĝMN → κ2ĝMN , κ ∈ R. (56)

The Riemann tensor is inert under this transformation. However, when we contract its indices to form the
Ricci scalar, we pick up one over the scale factor from the inverse metric [6]:

R̂→ κ−2R̂. (57)

This rescales the Lagrangian density by a constant factor. However, we can divide it away when we set the
variation of the action to zero and it has no effect on the field equations [6].

Now let’s see what effect this rescaling has on the lower-dimensional theory. We can write this symmetry
infinitesimally as

δĝMN = 2aĝMN , (58)

where a is some constant parameter. Let’s group this symmetry with the symmetry induced in the metric
by a nonzero c:

δĝMN = cδ4M ĝ4N + cδ4N ĝM4 + 2aĝMN , (59)

where δAB is the Kronecker delta [6]. If we plug the five-dimensional line element (7) into this, we find that

βδφ = a+ c, δAµ = −cAµ, and δgµν = 2agµν − 2αgµνδφ. (60)

This means that, if we rescale the five-dimensional metric, we can allow c to behave as the dilaton shift and
keep the four-dimensional metric inert [6]. To do this, we enforce that our five-dimensional metric rescales
as

a = − c
3
. (61)

If we rescale when we choose a new set of general coordinates, then the c transformation becomes [6]:

δφ = −2
√

3

3
c, δAµ = −cAµ, and δgµν = 0. (62)

This is exactly what we’d expect for a dilaton shift of −2
√

3c/3. Thus, with the additional constraint on
metric rescaling, the system is symmetric under this transformation too [6].

So, if we impose Kaluza’s cylinder condition on five-dimensional Einstein gravity, we recover field equa-
tions consistent with a four-dimensional system that contains Einstein gravity, Maxwell electromagnetism,
and a scalar field. Furthermore, transformations in the higher-dimensional space that preserve the cylin-
der condition and the five-dimensional field equations result in the appropriate symmetries in the lower-
dimensional spacetime.

3 Compactification and Other Tricks

Even with all the success of Kaluza’s theory, the cylinder condition is a bit hard to swallow. With no
justification, it seems rather contrived. Indeed, if we impose an isometry on the higher-dimensional theory,
it is perhaps not surprising that this manifests as a gauge symmetry in the lower dimensional theory. Both

6In theory, the scale factor could be negative. However, this would reverse our sign convention for spacelike and timelike
vectors.
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the higher-dimensional isometry and the lower-dimensional gauge symmetry are manifestations of a one-
dimensional Lie symmetry group, after all. It would therefore be nice if we could somehow justify Kaluza’s
mysterious condition.

The first successful attempt to justify the cylinder condition comes from Klein [2, 7, 13, 15], and this is
where the name “Kaluza-Klein theory” originates. Klein discovered that, if the fifth dimension is a circle, the
circumference can be made so small that any dependence of the metric on x4 is unobservable [2, 7, 13, 15].
In modern notation, we say Klein’s ansatz is that

M(5) =M(4) × U(1), (63)

where U(1) is the circle group [6, 7]. Thus the fifth dimension is compact and we call Klein’s scheme
compactification [7]

With this topology for the five-dimensional spacetime, the metric must be periodic in x4. This means
that we can Fourier expand the five-dimensional metric as

ĝMN (x, x5) =

∞∑
n=−∞

g
(n)
MN (x)einx

4/L, (64)

where x are the coordinates ofM(4), n is the Fourier mode number, and L is the length scale of U(1) [6]. As
usual, higher-|n| modes correspond to higher energy scales. In fact, the n = 0 modes correspond to massless
fields, while the n 6= 0 modes correspond to massive fields [6]. This is easiest to see by studying a simpler
model, elegantly explained by Pope [6].

Suppose we have a massless scalar field on M(5), call it σ̂.7 Thanks to the Klein-Gordon equation, we
have that

2̂σ̂ = 0, (65)

where 2̂ = ∂M∂M [6]. If we Fourier expand σ̂, we find that

σ̂(x, x5) =

∞∑
n=−∞

σ̂n(x)einx
4/L, (66)

as with the metric [6]. If we apply the five-dimensional Lapplacian operator, we find that the each four-
dimensional field satisfies

2σn =
n2

L2
σn, (67)

which is the Klein-Gordon equation for a scalar field with mass |n|/L [6]. Similar reasoning holds for the
Fourier expansion of the metric tensor.

Klein saw the parallels between the periodicity of the compactified dimension and the azimuthal direction
in an electron’s orbit around a nucleus [2, 13, 15]. He rather ambitiously hoped to use the n 6= 0 modes to
explain the quantization of electric charge in the same way that periodic boundary conditions explain the
energy levels in an atom [2, 13, 15]. In Klein’s scheme, the nth harmonic of the metric holds an “electric”
charge of

en = n
2
√
πG

πL
,

where G is Newton’s constant [2, 13, 15]. This would mean that the charge of an electron is

e =
2
√
πG

πL
.

We can choose L to match the observed electron charge, and it turns out to be about one hundred Planck
lengths [2]. In this scheme, the cylinder condition holds only approximately, and it would break down at the

7We use σ̂ to avoid confusing this field with the dilaton φ.
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appropriate length scale [2, 7].8 String theory and M-theory use a similar compactification approach, but
with more compactified dimensions [7, 6].

If we would prefer the cylinder condition to be absolute, we can set L to be even smaller, on the order
of one Planck length, so that the massive modes have such high energies that they can never be observed.
In this case the n = 0 mode is the only observable part of the metric, and it satisfies cylinder condition [6].
Klein’s conserved charge ensures we can do this [13, 15, 2, 6]. Zero charge can never spontaneously become
nonzero charge [6].

An easy way to understand this is that the Fourier basis functions einx
4/L are representations of U(1)

[6]. The n 6= 0 mode functions are paired off by complex conjugates. The function corresponding to mode
number n is the complex conjugate of the function corresponding to mode number −n. The n = 0 mode
function is thus a representation of the trivial subgroup of U(1). Since it’s a subgroup, it’s closed and no
amount of multiplying n = 0 modes together will cause us to jump to an n 6= 0 mode [6].

Although Klein’s compactification scheme is by far the most popular way to justify the cylinder condition,
it is not the only option. (3 + 1)-dimensional projective space can be thought of as a hypersurface in (4 + 1)-
dimensional Minkowski space. In 1930, Veblen and Hoffmann used this idea to justify Kaluza’s fifth dimension
and the cylinder condition, where the fifth dimension actually reflects the projective nature of spacetime [16].
More than thirty years later, Joseph discussed this possibility as well [17].

People have also argued that the cylinder condition is only an approximation, even on accessible en-
ergy scales. The biggest advocate of this approach is Wesson, who has explored some of the cosmological
implications of such a scheme [18, 19, 8, 9].

4 Concluding Remarks

From a five-dimensional theory of pure gravity, we’ve attained a four-dimensional system containing gravity,
electromagnetism, and a scalar field. Although Kaluza’s cylinder condition appears contrived at first, Klein
and others have demonstrated that it can be justified. This is a remarkable accomplishment, and one that
has garnered a great deal of interest over the years.

Of course, Kaluza-Klein theory has some clear weaknesses. Although the theory predicts the massless
scalar dilaton, we haven’t observed any such particle. Since it’s coupled to the electromagnetic field, we
would have observed it if it existed. Additionally, the theory gets much more complicated when we add
the strong and electroweak forces. Each force adds at least one dimension subject to its own “cylinder
condition,” and the whole theory becomes highly nontrivial.

Despite these difficulties, Kaluza-Klein theory remains seductive. Kaluza’s geometric approach to unifica-
tion appeals to our aesthetic sensibilities and Klein’s contribution, the compactification, offers the tantalizing
possibility of explaining quantum mechanics geometrically—the whole thing hints at a theory of quantum
gravity. This is certainly why string theory and M-theory use compactified dimensions. It is highly likely
that this beautiful theory will continue to inspire new ideas in and new approaches to gravitational physics.
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