The Heavenly Spheres make music for us, The Holy Twelve dance with us, All things join in the dance! Ye who dance not, know not what we are knowing ~Gustav Holst By the sweat of your brow you will eat your food until you return to the ground, since from it you were taken; for dust you are and to dust you will return. ~Genesis 3:19 Many months ago, Richard Green posted an article on Google+ that described how life on a toroidal planet would work. The discussion in the comments eventually led to speculation as to whether or
Condensed Matter / optics / Physics / etc.
The Graphene Electro-Optic Modulator
Say we have a beam of light—maybe we made it with a laser. We’d like be able to change the intensity of the beam so that we can alternately brighten and dim it. Moreover, we’d like to be able to do so quickly. Physically blocking and unblocking the beam just isn’t fast enough. So what do we do? The solution is to make an electric switch so we can change how the light behaves via electrical signals. This is an electro-optic modulator (EOM). Two weeks ago, I introduced graphene to you all. And last week, I described some of
Condensed Matter / optics / Physics / etc.
Graphene and Me: My Brush with the Wonder Material
Graphene, a two-dimensional honeycomb lattice of carbon atoms, has made waves in science and technology circles. Last week, I gave a brief overview of the history of the stuff and why it’s special. This week, I’d like to continue the story by talking about applications. Unfortunately for us—and fortunately for society as a whole—graphene has spawned so many new technologies that it’s impossible for me to discuss them all. So instead, I thought I’d talk a single application that has personal value to me. As an undergraduate student, I spent two years in a laser lab studying graphene’s applications
Condensed Matter / optics / Physics / etc.
Graphene: The Story of the Wonder Material
I call our world Flatland, not because we call it so, but to make its nature clearer to you, my happy readers, who are privileged to live in Space. ~A. Square In the past few years, you’ve probably heard something about graphene—whether as a replacement for silicon, as the next generation of organic solar cell, as the material in fast-charging batteries, or as one of the strongest materials ever discovered. There’s been so much hype that people have begun calling the flood of research and investment the graphene gold rush. In this post, I’ll give you a brief primer
Mathematics / probability / Science And Math
Throwing Darts for Pi
The ancient Greeks defined the number as the ratio of the circumference of a circle to its diameter. Since then we’ve discovered that is incredibly important. It appears everywhere in physics, mathematics, and engineering. But how does one calculate it? is an irrational number, so it’s impossible to calculate perfectly precisely. Nevertheless, it’s important to have an accurate approximation. The Greeks originally calculated by taking a piece of rope or twine of known length, bending it into the shape of a circle and comparing the diameter of the circle to the length of the twine. Since then, many many
optics / Physics / Quantum Mechanics / etc.
Mode-Locked Lasers: The Beating Pulse of Metrology
Your hand opens and closes, opens and closes. If it were always a fist or always stretched open, you would be paralysed. Your deepest presence is in every small contracting and expanding, the two as beautifully balanced and coordinated as birds’ wings. ~Rumi Although we don’t usually notice them, ultrafast pulsed lasers are all around us. They are keep time in the atomic clocks on GPS satellites. Metrologists and chemists use them to measure the properties of atoms and molecules. Astronomers use them to measure the color of light from distant stars. Particle physicists use them in supercollidors. Materials
Physics / Quantum Mechanics / Science And Math
Quantum Field Theory in A Cavity
So I’m still mired in final exams–this time a final project for my quantum field theory course. The downside is that it will be yet another week before my next “real” post. The upside is that I still have a little something for you all this week. The above image shows part of what I’m working on for my project. Imagine that you make a square box of mirrors, and with some magic quantum tweezers, you put exactly fifty-one photons into your box. Light is a special oscillation in an electromagnetic field, which we usually describe classically. But if
Mathematics / Science And Math
Probability: Part 2 (Distributions)
Editors Note: This week, I’m busy with final exams here in Guelph, so my good friend Michael Schmidt has graciously agreed to do a guest post. Thanks, Mike! Hi everyone! Since last time I decided to talk about the basics of probability, I thought this time I would expand on that subject. In part 1, I discussed how to count different possible outcomes of random events and determine the likelihood of particular events. If you have not read that, or it’s been a while, you should read over Part 1. This method is great when where are relatively few possible
Uncategorized
Post Delayed
This week I’m in Savannah Georgia for the April APS meeting. So far, it’s been a blast! I met fellow blogger +Hamilton Carter, who writes at Copasetic Flow. If you’re interested in relativity or the history of physics, you should definitely check it out. He had a very nice talk on the history of special relativity, and he blogged about it here. And next week, I’ll be taking an exam. So for the next two weeks there may be no posts. To tide you over, I’ll put up a guest post by my good friend Michael Schmidt soon.
optics / Physics / Quantum Mechanics / etc.
Scattering Part Two: A Quantum of Scattering
We come spinning out of nothing, scattering stars like dust! ~Jalāl ad-Dīn Muhammad Rūmī Last week, I explained Rayleigh and Raman scattering from a classical point of view. In the process, I explained why the sky is blue and introduced Raman spectroscopy, a powerful tool for studying the structure of molecules. This week, I fill in the gaps and explain scattering from a quantum-mechanical point of view. Before we can talk about scattering, though, we need to review some important ideas from quantum mechanics: energy levels and the Heisenberg uncertainty principle. Energy Levels The story of energy levels starts