Astrophysics / Physics / Relativity / etc.

The Black Holes that Created LIGO’s Gravitational Waves

LIGO merger Bohn

A little over a week ago, the LIGO collaboration detected gravitational waves emitted during the in-spiral and merger of two black holes. And the world’s scientists, myself included, collectively went bananas. Last week, I attempted to summarize the event and capture some of the science, and poetry, that has us so excited. In short, gravitational waves provide us a totally new way to look at the universe. LIGO’s one detection has already provided us with a wealth of information about gravity and astrophysics. Today, I summarize some of what we’ve learned. Black Holes As We Knew Them In the

Astrophysics / Physics / Relativity / etc.

The Poetry of LIGO’s Gravitational Waves

Binary Black Hole Merger Signal

Yesterday the LIGO scientific collaboration announced that they had detected the gravitational waves from the in-spiral and merger of two black holes, shown in figure 1. It would not be an overstatement to say that this result has changed science forever. As a gravitational physicist, it is hard for me to put into words how scientifically important and emotionally powerful this moment is for me and for everyone in my field. But I’m going to try. This is my attempt to capture some of the science—and the poetry—of LIGO’s gravitational wave announcement. The Source About 1.3 billion years ago

Geometry / Physics / Relativity / etc.

Our Local Spacetime

Gravity Probe B circling Earth

General relativity tells us that mass (and energy) bend spacetime. And when people visualize the effect of a planet on spacetime, they usually imagine something like in figure 1, where the planet creates a “dip” in spacetime much like a “gravitational well.” But today I’m going to show you what spacetime actually looks like near a planet… and it doesn’t look anything like the common picture. This is the fifth part in my many-part series on general relativity. Here are the first four parts: Galileo almost discovered general relativity General relativity is the dynamics of distance General relativity is

Physics / Relativity / Science And Math

Distance Ripples: How Gravitational Waves Work

Look at those curves!

Gravitational waves are “ripples in space time” that propagate through it like waves on water. That’s the common story and, for the most part, it’s right. But what does that mean? This is part four in my many-part series on general relativity. The first three parts introduce general relativity from the ground up. You can find them here: Galileo almost discovered general relativity General relativity is the dynamics of distance General relativity is the curvature of spacetime Okay. Without further ado, gravitational waves! Spooky Action at a Distance First, I want to help you get an intuition for why

Astrophysics / Geometry / Mathematics / etc.

Speculative Sunday: Can a Black Hole Explode?

Cassiopeia A Spitzer Image

Nothing can escape the gravitational pull of a black hole, not even light. That’s why they’re, well, black. (Of course, as I’ve described before, black holes can glow very brightly, thanks to all the in-falling matter. Sometimes they even produce gamma rays. I’m also ignoring the negligible amount of Hawking radiation that black holes theoretically produce.) Once you pass the event horizon of a black hole, you cannot ever escape. Escape is simply forbidden by the laws of physics. That is, of course…if there actually is an event horizon, not just something that looks like one. Carlo Rovelli ,

Astrophysics / Physics / Relativity / etc.

Simulating Gamma Ray Bursts

It was the mid 1960s. The United States and the Soviet Union had recently signed the Partial Nuclear Test Ban Treaty, which forbid the detonation of nuclear weapons except underground. Since neither nation trusted the other, each was carefully monitoring the other for non-compliance. In particular, the United States feared that the soviets might be, I kid you not, testing bombs behind the moon. Vela The United States solved this problem with the Vela satellites. When a nuclear bomb goes off, it emits a short burst of gamma rays, which are rays of extremely high energy light. The Vela

Astrophysics / Physics / Science And Math

Why Black Holes Glow: Accretion Disks

The patient accretion of knowledge, the focusing of all one’s energies on some problem in history or science, the dogged pursuit of excellence of whatever kind these are right and proper ideals for life. ~Michael Dirda Nothing can escape from a black hole, not even light. This is why we call them “black.” One would imagine, then, that black holes are black invisible menaces, lurking out in the depths of space. Surprisingly, though, black holes glow. The cover image shows a radio photograph of the center of the Milky Way. The center glow, Sagittarius A, is partly due to